Subject programme

- 1. Subject name / subject module: Hardware platforms for IOT
- 2. Lecture language: English
- **3.** The location of the subject in study plans:
 - Area or areas of the studies: Computer Control Systems Engineering
 - Degree of the studies: 2nd degree studies
 - Field or fields (implementation of effects standard): Mechatronics
- 4. Supervision of subject implementation:
 - The Institute / Another unit: The Institute of Informatics and Mechatronics
 - The person responsible for the subject: Ocetkiewicz Tomasz, mgr inż.
 - People cooperating in the development of the programme of the subject:
- 5. The number of hours and forms of teaching for individual study system and the evaluation method

						Topo	hingad	ivitios w	ith tho	tutor							
Form						Teac	aning act	LIVILIES W	in the	tutoi							Total
of classes Mode of study	sow	ECTS	Laboratory work	sow	ECTS	 sow	ECTS		sow	ECTS	 sow	ECTS	 sow	ECTS	 sow	ECTS	ECTS
Full-time studies			45	55	4												4
Part-time studies					4												4
Credit rigor			Graded assi	gmen	t												

6. Student workload – ECTS credits balance

1 ECTS credit corresponds to 25-30 hours of student work needed to achieve the expected learning outcomes including the student's own work

Activity (please specify relevant work for the subject)	Hourly student workload (full-time studies/part-time studies)
Participation in laboratory classes	45
Preparing to the laboratories	20
Independent study of the subject	33
Participation in an exam / graded assignment / final grading	2
Total student workload	100
ECTS credits	4
* Student's workload related to practical forms	100
Student's workload in classes requiring direct participation of academic teachers	45

7. Implementation notes: recommended duration (semesters), recommended admission requirements, relations between the forms of classes:

None

Recommended duration of the subject is taken from the course plan.

8. Specific learning outcomes – knowledge, skills and social competence

Spe	cific learning outcomes for the subject			Methods for testing of		
Outcome	Outcome description	Form	Teaching method	(checking, assessing)		
symbol	Outcome description			learning outcomes		
		Knowle	dge			
	A student knows and understands selected		Inquiry methods	Student learning activities		
	facts and phenomena in development boards					
	for IoT, is able to explain the complex					
K W05	relationships between them, which	Laboratory				
N_1005	constitute the advanced general knowledge	work				
	in the field of automation, electronics, and					
	electrical engineering, sufficient to design an					
	IoT device.					

Subject programme

K_W07	A student possesses sufficient knowledge in the field of technical informatics, necessary to understand hardware platforms for the Internet of Things programming rules, and to apply this knowledge in practice through the use of appropriate programming language and software environment due to the project specification.			
		Skill	5	
K_U02	A student is able to use information and communication technologies (ICT) to create documentation of an IoT device and use the engineering graphics to prepare an effective HMI implementation.	Laboratory work	Inquiry methods	Student learning activities

9. Assessment rules / criteria for each form of education and individual grades

0% - 60%	ndst	81% - 90%	db
61% - 70%	dst	91% - 93%	db+
71% - 80%	dst+	94% - 100%	bdb

Activity	Grades	Calculation	To Final
Laboratory tasks	db; bdb; bdb; db (4; 5; 5; 4)	4 * 25% + 5 * 25% + 5 * 25% + 4 * 25% = 4.5	4.5

10. The learning contents with the form of the class activities on which they are carried out

(Laboratory work)

1. Software and programming tools for IOT devices prototyping: ESP Easy; ESP-Open-RTOS; MicroPython; NodeMCU; Mongoose OS; PlatformIO;

2. IOT devices prototyping: ESP8266 and ESP32 cores; RaspberryPi IOT gateway; LoRa32u4 development board; Prototyping LoRa using Arduino platform - Arduino MKR board; SiPy development platform;

3. Platforms and tools for data visualization: Connecting ESP32 to Amazon cloud, Cayenne MQTT and ESP8266; NodeRED and ESP8266; ThingsSpeak;

4. Applications examples: Smart clothes; Smart buildings – house access control; Sensor networks – ar quality, environmental measurement systems, PV monitoring system; Health monitoring system;

11. Required teaching aids

Laboratory classes - specialist laboratory

12. Literature:

a. Basic literature:

1. Building Arduino Projects for the Internet of Things; Adeel Javed; ISBN 978-1-4842-1940-9; Apress, Berkeley; 2016

2. Blum J.; Exploring Arduino ; tools and techniques for engineering wizardry; ISBN 978-1-118-54936-0; Wiley 2013

- a. Supplementary literature:
 - 1. MicroPython for the Internet of Things; Charles Bell; ISBN 978-1-4842-3123-4; Apress, Berkeley; 2017
 - 2. John C. Shovic; Raspberry Pi IoT Projects; ISBN 978-1-4842-1377-3; Apress, Berkeley; 2016
 - 3. Tianhong Pan, Yi Zhu ; Designing Embedded Systems with Arduino; ISBN 978-981-10-4418-2; Springer 2018
- **b.** Internet sources:
 - 1. LoRa Alliance lora-alliance.org
 - 2. Sparkfun Tutorials learn.sparkfun.com
 - 3. MQTT docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
 - 4. NodeRed Documentation nodered.org/docs
 - 5. The Things Network Documentation www.thethingsnetwork.org

Subject programme

- **13.** Available educational materials divided into forms of class activities (Author's compilation of didactic materials, e-learning materials, etc.)
- 14. Teachers implementing particular forms of education

Form of education	Name and surname
1. Laboratory classes	Ocetkiewicz Tomasz, mgr inż.